4 years ago

Aerogel-based solar thermal receivers

Aerogel-based solar thermal receivers
In any solar thermal application, such as solar space heating, solar hot water for domestic or industrial use, concentrating solar power, or solar air conditioning, a solar receiver converts incident sunlight into heat. In order to be efficient, the receiver must ideally absorb the entire solar spectrum while losing relatively little heat. Currently, state-of-the-art receivers utilize a vacuum gap above an absorbing surface to minimize the convection losses, and selective surfaces to reduce radiative losses. Here we investigate a receiver design that utilizes aerogels to suppress radiation losses, boosting the efficiency of solar thermal conversion. We predict that receivers using aerogels could be more efficient than vacuum-gap receivers over a wide range of operating temperatures and optical concentrations. Aerogel-based receivers also make possible new geometries that cannot be achieved with vacuum-gap receivers.

Graphical abstract

image

Highlights

fx1

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304755

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.