3 years ago

Cassini CAPS identification of pickup ion compositions at Rhea.

M. F. Thomsen, A. J. Coates, J. H. Waite, T. A. Nordheim, L. H. Regoli, B. D. Teolis, G. H. Jones, R. E. Johnson, M. A. Cordiner, R. T. Desai, M. M. Cowee, S. A. Taylor

Saturn's largest icy moon, Rhea, hosts a tenuous surface-sputtered exosphere composed primarily of molecular oxygen and carbon dioxide. In this Letter, we examine Cassini Plasma Spectrometer velocity space distributions near Rhea and confirm that Cassini detected nongyrotropic fluxes of outflowing CO$_2^+$ during both the R1 and R1.5 encounters. Accounting for this nongyrotropy, we show that these possess comparable alongtrack densities of $\sim$2$\times$10$^{-3}$ cm$^{-3}$. Negatively charged pickup ions, also detected during R1, are surprisingly shown as consistent with mass 26$\pm$3 u which we suggest are carbon-based compounds, such as CN$^-$, C$_2$H$^-$, C$_2^-$, or HCO$^-$, sputtered from carbonaceous material on the moons surface. These negative ions are calculated to possess alongtrack densities of $\sim$5$\times$10$^{-4}$ cm$^{-3}$ and are suggested to derive from exogenic compounds, a finding consistent with the existence of Rhea's dynamic CO$_2$ exosphere and surprisingly low O$_2$ sputtering yields. These pickup ions provide important context for understanding the exospheric and surface-ice composition of Rhea and of other icy moons which exhibit similar characteristics.

Publisher URL: http://arxiv.org/abs/1711.11256

DOI: arXiv:1711.11256v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.