3 years ago

Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics.

Vivek B. Sardeshmukh, Hristo N. Djidjev, Susan M. Mniszewski, Georg Hahn, Anders M.N. Niklasson, Christian F.A. Negre

We study a graph partitioning problem motivated by the simulation of the physical movement of multi-body systems on an atomistic level, where the forces are calculated from a quantum mechanical description of the electrons. Several advanced algorithms have been published in the literature for such simulations that are based on evaluations of matrix polynomials. We aim at efficiently parallelizing these computations by using a special type of graph partitioning. For this, we represent the zero-nonzero structure of a thresholded matrix as a graph and partition that graph into several components. The matrix polynomial is then evaluated for each separate submatrix corresponding to the subgraphs and the evaluated submatrix polynomials are used to assemble the final result for the full matrix polynomial. The paper provides a rigorous definition as well as a mathematical justification of this partitioning problem. We use several algorithms to compute graph partitions and experimentally evaluate their performance with respect to the quality of the partition obtained with each method and the time needed to produce it.

Publisher URL: http://arxiv.org/abs/1605.01118

DOI: arXiv:1605.01118v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.