3 years ago

Quench dynamics of a dissipative Rydberg gas in the classical and quantum regime.

Ricardo Gutierrez, Igor Lesanovsky, Dominic Gribben

Understanding the non-equilibrium behavior of quantum systems is a major goal of contemporary physics. Much research is currently focused on the dynamics of many-body systems in low-dimensional lattices following a quench, i.e., a sudden change of parameters. Already such a simple setting poses substantial theoretical challenges for the investigation of the real-time post-quench quantum dynamics. In classical many-body systems the Kolmogorov-Mehl-Johnson-Avrami model describes the phase transformation kinetics of a system that is quenched across a first order phase transition. Here we show that a similar approach can be applied for shedding light on the quench dynamics of an interacting gas of Rydberg atoms, which has become an important experimental platform for the investigation of quantum non-equilibrium effects. We are able to gain an analytic understanding of the time-evolution following a sudden quench from an initial state devoid of Rydberg atoms and identify strikingly different behaviors of the excitation growth in the classical and quantum regimes. Our approach allows us to describe quenches near a non-equilibrium phase transition and provides an approximate analytic solution deep in the quantum domain.

Publisher URL: http://arxiv.org/abs/1709.10383

DOI: arXiv:1709.10383v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.