3 years ago

Effective Building Block Design for Deep Convolutional Neural Networks using Search.

Mohak Shah, Jayanta K Dutta, Unmesh Kurup, Jiayi Liu

Deep learning has shown promising results on many machine learning tasks but DL models are often complex networks with large number of neurons and layers, and recently, complex layer structures known as building blocks. Finding the best deep model requires a combination of finding both the right architecture and the correct set of parameters appropriate for that architecture. In addition, this complexity (in terms of layer types, number of neurons, and number of layers) also present problems with generalization since larger networks are easier to overfit to the data. In this paper, we propose a search framework for finding effective architectural building blocks for convolutional neural networks (CNN). Our approach is much faster at finding models that are close to state-of-the-art in performance. In addition, the models discovered by our approach are also smaller than models discovered by similar techniques. We achieve these twin advantages by designing our search space in such a way that it searches over a reduced set of state-of-the-art building blocks for CNNs including residual block, inception block, inception-residual block, ResNeXt block and many others. We apply this technique to generate models for multiple image datasets and show that these models achieve performance comparable to state-of-the-art (and even surpassing the state-of-the-art in one case). We also show that learned models are transferable between datasets.

Publisher URL: http://arxiv.org/abs/1801.08577

DOI: arXiv:1801.08577v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.