3 years ago

A Rapidly Deployable Classification System using Visual Data for the Application of Precision Weed Management.

Chris McCool, Tristan Perez, Feras Dayoub, David Hall

In this work we demonstrate a rapidly deployable weed classification system that uses visual data to enable autonomous precision weeding without making prior assumptions about which weed species are present in a given field. Previous work in this area relies on having prior knowledge of the weed species present in the field. This assumption cannot always hold true for every field, and thus limits the use of weed classification systems based on this assumption. In this work, we obviate this assumption and introduce a rapidly deployable approach able to operate on any field without any weed species assumptions prior to deployment. We present a three stage pipeline for the implementation of our weed classification system consisting of initial field surveillance, offline processing and selective labelling, and automated precision weeding. The key characteristic of our approach is the combination of plant clustering and selective labelling which is what enables our system to operate without prior weed species knowledge. Testing using field data we are able to label 12.3 times fewer images than traditional full labelling whilst reducing classification accuracy by only 14%.

Publisher URL: http://arxiv.org/abs/1801.08613

DOI: arXiv:1801.08613v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.