3 years ago

Improved Finite Blocklength Converses for Slepian-Wolf Coding via Linear Programming.

Ankur A. Kulkarni, Sharu Theresa Jose

A new finite blocklength converse for the Slepian- Wolf coding problem is presented which significantly improves on the best known converse for this problem, due to Miyake and Kanaya [2]. To obtain this converse, an extension of the linear programming (LP) based framework for finite blocklength point- to-point coding problems from [3] is employed. However, a direct application of this framework demands a complicated analysis for the Slepian-Wolf problem. An analytically simpler approach is presented wherein LP-based finite blocklength converses for this problem are synthesized from point-to-point lossless source coding problems with perfect side-information at the decoder. New finite blocklength metaconverses for these point-to-point problems are derived by employing the LP-based framework, and the new converse for Slepian-Wolf coding is obtained by an appropriate combination of these converses.

Publisher URL: http://arxiv.org/abs/1801.08693

DOI: arXiv:1801.08693v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.