3 years ago

A Solution to Time-Varying Markov Decision Processes.

Lantao Liu, Gaurav S. Sukhatme

We consider a decision-making problem where the environment varies both in space and time. Such problems arise naturally when considering e.g., the navigation of an underwater robot amidst ocean currents or the navigation of an aerial vehicle in wind. To model such spatiotemporal variation, we extend the standard Markov Decision Process (MDP) to a new framework called the Time-Varying Markov Decision Process (TVMDP). The TVMDP has a time-varying state transition model and transforms the standard MDP that considers only immediate and static uncertainty descriptions of state transitions, to a framework that is able to adapt to future time-varying transition dynamics over some horizon. We show how to solve a TVMDP via a redesign of the MDP value propagation mechanisms by incorporating the introduced dynamics along the temporal dimension. We validate our framework in a marine robotics navigation setting using spatiotemporal ocean data and show that it outperforms prior efforts.

Publisher URL: http://arxiv.org/abs/1605.01018

DOI: arXiv:1605.01018v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.