3 years ago

Remote Sensing Image Fusion Based on Two-stream Fusion Network.

Yunhong Wang, Xiangyu Liu, Qingjie Liu

Remote sensing image fusion (also known as pan-sharpening) aims at generating high resolution multi-spectral (MS) image from inputs of a high spatial resolution single band panchromatic (PAN) image and a low spatial resolution multi-spectral image. Inspired by the astounding achievements of convolutional neural networks (CNNs) in a variety of computer vision tasks, in this paper, we propose a two-stream fusion network (TFNet) to address the problem of pan-sharpening. Unlike previous CNN based methods that consider pan-sharpening as a super resolution problem and perform pan-sharpening in pixel level, the proposed TFNet aims to fuse PAN and MS images in feature level and reconstruct the pan-sharpened image from the fused features. The TFNet mainly consists of three parts. The first part is comprised of two networks extracting features from PAN and MS images, respectively. The subsequent network fuses them together to form compact features that represent both spatial and spectral information of PAN and MS images, simultaneously. Finally, the desired high spatial resolution MS image is recovered from the fused features through an image reconstruction network. Experiments on Quickbird and \mbox{GaoFen-1} satellite images demonstrate that the proposed TFNet can fuse PAN and MS images, effectively, and produce pan-sharpened images competitive with even superior to state of the arts.

Publisher URL: http://arxiv.org/abs/1711.02549

DOI: arXiv:1711.02549v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.