3 years ago

Novel Two-Dimensional Silicon Dioxide with in-plane Negative Poisson's Ratio.

Xiao Dong, Zhibin Gao, Nianbei Li, Jie Ren

Silicon dioxide or silica, normally existing in various bulk crystalline and amorphous forms, is recently found to possess a two-dimensional structure. In this work, we use ab initio calculation and evolutionary algorithm to unveil three new 2D silica structures whose themal, dynamical and mechanical stabilities are compared with many typical bulk silica. In particular, we find that all these three 2D silica have large in-plane negative Poisson's ratios with the largest one being double of penta-graphene and three times of borophenes. The negative Poisson's ratio originates from the interplay of lattice symmetry and Si-O tetrahedron symmetry. Slab silica is also an insulating 2D material, with the highest electronic band gap (> 7 eV) among reported 2D structures. These exotic 2D silica with in-plane negative Poisson's ratios and widest band gaps are expected to have great potential applications in nanomechanics and nanoelectronics.

Publisher URL: http://arxiv.org/abs/1801.08567

DOI: arXiv:1801.08567v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.