5 years ago

Forming Sticky Droplets from Slippery Polymer Zwitterions

Forming Sticky Droplets from Slippery Polymer Zwitterions
Todd Emrick, Ying Bai, Cristiam F. Santa Chalarca, Rachel A. Letteri, Ryan C. Hayward
Polymer zwitterions are generally regarded as hydrophilic and repellant or “slippery” materials. Here, a case is described in which the polymer zwitterion structure is tailored to decrease water solubility, stabilize emulsion droplets, and promote interdroplet adhesion. Harnessing the upper critical solution temperature of sulfonium- and ammonium-based polymer zwitterions in water, adhesive droplets are prepared by adding organic solvent to an aqueous polymer solution at elevated temperature, followed by agitation to induce emulsification. Droplet aggregation is observed as the mixture cools. Variation of salt concentration, temperature, polymer concentration, and polymer structure modulates these interdroplet interactions, resulting in distinct changes in emulsion stability and fluidity. Under attractive conditions, emulsions encapsulating 50–75% oil undergo gelation. By contrast, emulsions prepared under conditions where droplets are nonadhesive remain fluid and, for oil fractions exceeding 0.6, coalescence is observed. The uniquely reactive nature of the selected zwitterions allows their in situ modification and affords a route to chemically trigger deaggregation and droplet dispersion. Finally, experiments performed in a microfluidic device, in which droplets are formed under conditions that either promote or suppress adhesion, confirm the salt-responsive character of these emulsions and the persistence of adhesive interdroplet interactions under flow. Dipole–dipole interactions of polymer zwitterions promote adhesion between emulsion droplets, which exhibit responsiveness to both environmental and chemical triggers. Oil-in-water emulsions stabilized by polymer zwitterions become adhesive and gel under conditions where the polymers are insoluble in the aqueous phase. These interdroplet interactions are modulated by temperature, salt concentration, polymer concentration, zwitterion type, and reactions conducted at the oil–water interface.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702921

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.