5 years ago

<i>In vivo</i> production of non-glycosylated recombinant proteins in <i>Nicotiana benthamiana</i> plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of <i>Streptomyces plicatus</i>

Gulnara Hasanova, Burcu Gulec, Tarlan Mamedov, Rifat Ungor, Kader Cicek

by Tarlan Mamedov, Kader Cicek, Burcu Gulec, Rifat Ungor, Gulnara Hasanova

A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity. Previously, we developed a strategy for enzymatic deglycosylation of proteins in planta by co-expressing bacterial peptide-N-glycosidase F (PNGase F). Though PNGase F removes oligosaccharides from glycosylated proteins, in so doing it causes an amino acid change due to the deamidation of asparagine to aspartate in the N-X-S/T site. Endo-β-N-acetylglucosaminidase (EC3.2.1.96, Endo H), another deglycosylating enzyme, catalyzes cleavage between two N-Acetyl-D-glucosamine residues of the chitobiose core of N-linked glycans, leaving a single N-Acetyl-D-glucosamine residue without the concomitant deamidation of asparagine. In this study, a method for in vivo deglycosylation of recombinant proteins in plants by transient co-expression with bacterial Endo H is described for the first time. Endo H was fully active in vivo. and successfully cleaved N-linked glycans from glycoproteins were tested. In addition, unlike the glycosylated form, in vivo Endo H deglycosylated Pfs48/45 was recognized by conformational specific Pfs48/45 monoclonal antibody, in a manner similar to its PNGase F deglycosylated counterpart. Furthermore, the deglycosylated PA83 molecule produced by Endo H showed better stability than a PNGase F deglycosylated counterpart. Thus, an Endo H in vivo deglycosylation approach provides another opportunity to develop vaccine antigens, therapeutic proteins, antibodies, and industrial enzymes.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0183589

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.