5 years ago

Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells

Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells
Rui Fu, Yicheng Zhao, Yao Zhao, Xu Zhou, Qing Zhao, Kaihui Liu, Wenke Zhou, Dapeng Yu, Qi Li
Due to light-induced effects in CH3NH3-based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH3NH3-based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH3NH3PbI3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH3NH3PbI3 is 0.62 eV under dark conditions, larger than that of CsPbI2Br (0.45 eV); however, it reduces to 0.07 eV for CH3NH3PbI3 under illumination, smaller than that for CsPbI2Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH3NH3PbI3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01851

DOI: 10.1021/acs.jpclett.7b01851

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.