3 years ago

Direct Online Determination of Laser-Induced Particle Size Distribution by ICPMS

Direct Online Determination of Laser-Induced Particle Size Distribution by ICPMS
Céline Blitz Frayret, Fabien Pointurier, Barbora Svatosova, Fanny Claverie, Christophe Pécheyran, Ariane Donard
The characterization of the aerosol (size, composition, and concentration) generated by Laser Ablation is of great interest due to its impact on the analytical performances when coupled to Inductively Coupled Plasma Mass Spectrometry (ICPMS). The capabilities of High Resolution ICPMS as a direct tool to characterize nanoparticles produced by femtosecond Laser Ablation of pure copper are presented. An analytical protocol, similar to the “single particle ICPMS” technique used to characterize the size distribution of nanoparticles in solution, was developed in order to observe the signals of individual particles produced by a single ablation shot. A Visual Basic for Applications (VBA) data processing was developed to count and sort the particles as a function of their size and thus determine the particle size distribution. To check the reliability of the method, the results were compared to a more conventional technique, namely, Electrical Low Pressure Impaction (ELPI) for 4000 shots. Detection limit for the particles produced by the laser ablation of a copper foil is of a few attograms corresponding to a nanoparticle of 14 nm. The direct online determination of particle size by ICPMS gave similar results than ELPI for copper particles ejected during the ablation shot by shot at a fixed spot, from 1 to 100 shots. Particles larger than 159 nm represented less than 1% of the aerosol whose distribution was centered on 25–51 nm.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01041

DOI: 10.1021/acs.analchem.7b01041

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.