3 years ago

Magnetar crust electron capture for $^{55}$ 55 Co and $^{56}$ 56 Ni

Jing-Jing Liu, Dong-Mei Liu

Abstract

Based on the relativistic mean-field effective interaction principle and random phase approximation theory in superstrong magnetic fields (SMFs), we present an analysis of the influence of SMFs on the electron Fermi energy, nuclear blinding energy, single-particle level structure and electron capture for \(^{55}\) Co, and \(^{56}\) Ni by the shell-model Monte Carlo method in the magnetar’s crust. The electron capture rates increase by two orders of magnitude due to an increase in the electron Fermi energy and a change in single-particle level structure by SMFs. Then the rates decrease by more than two orders of magnitude due to an increase in the nuclear binding energy and a reduction in the electron Fermi energy by SMFs.

Publisher URL: https://link.springer.com/article/40/epjc/s10052-018-5559-9

DOI: 10.1140/epjc/s10052-018-5559-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.