3 years ago

Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein

Zemin Deng, Marco Paliza-Carre, Fenyong Liu, Xiaoping Yang, Tianhong Zhou, Linyuan Feng, Xu Sun, Sangwei Lu, Gia-Phong Vu, Yanhong Ran, Chingman Foo, Songbin Wu, Yujun Liu, Jingxue Sheng, Phong Trang, Hongjian Li
Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulate genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects.

Publisher URL: http://journals.plos.org/plospathogens/article

DOI: 10.1371/journal.ppat.1006867

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.