5 years ago

Experimental and Theoretical Study of Azimuth Angle and Polarization Dependences of Sum-Frequency-Generation Vibrational Spectral Features of Uniaxially Aligned Cellulose Crystals

Experimental and Theoretical Study of Azimuth Angle and Polarization Dependences of Sum-Frequency-Generation Vibrational Spectral Features of Uniaxially Aligned Cellulose Crystals
Lasse Jensen, Seong H. Kim, Christopher M. Lee, Hong-Fei Wang, Xing Chen
Comprehensive interpretation of vibrational sum-frequency-generation (SFG) spectroscopic features of SFG-active nanodomains interspersed in amorphous bulk requires the knowledge of nonlinear susceptibility, χijk(2), of the SFG-active phase as a function of its spatial arrangement in the bulk as well as the polarizations of the probe lights. This study reports the full analysis of the azimuth angle and polarization dependence of SFG signals from a control sample consisting of uniaxially aligned cellulose Iβ crystals. The χijk(2) terms of cellulose were estimated from quantum mechanics calculations using time-dependent density functional theory (TD-DFT), and a simple structural model was built with truncated glucose dimers. The theoretical azimuth angle and polarization dependences of characteristic CH/CH2 and OH stretch modes of cellulose were compared with the experimentally observed trends. These comparisons revealed that the relative polarity of crystallites within the SFG coherence length, the random quasi phase-matching of polycrystalline domains, and the preferential packing of crystallites in the bulk play important roles governing the spectral features. Compared to that of small molecules, the difference between chiral and achiral responses in SFG spectra is more difficult to observe because of the inhomogeneous distribution of crystallites in the bulk sample.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03037

DOI: 10.1021/acs.jpcc.7b03037

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.