3 years ago

Biaxial Chain Growth of Polyolefin and Polystyrene from 1,6-Hexanediylzinc Species for Triblock Copolymers

Biaxial Chain Growth of Polyolefin and Polystyrene from 1,6-Hexanediylzinc Species for Triblock Copolymers
Hyun Mo Lee, Bun Yeoul Lee, Su Jin Kwon, Chung Sol Kim, Seung Soo Park, Jong Yeob Jeon, Tae Hee Kim, Sung Dong Kim
Synthesis of polyolefin (PO)-based block copolymers is of immense research interest. In this work, we report a strategy for the construction of polystyrene (PS)-block-PO-block-PS, a useful thermoplastic elastomer, directly from olefin and styrene monomers. Multinuclear zinc species Et[Zn(CH2)6]aZnEt were prepared through successive additions of BH3 and Et2Zn to 1,5-hexadiene. Poly(ethylene-co-propylene) chains were biaxially grown from the −(CH2)6– units in Et[Zn(CH2)6]aZnEt via “coordinative chain transfer polymerization (CCTP)” using the pyridylaminohafnium catalyst. PS chains were subsequently grown in one pot from the generated polymeryl–Zn sites by subsequent introduction of the anionic initiator Me3SiCH2Li·(pmdeta) (pmdeta, pentamethyldiethylenetriamine) and styrene monomers. The fraction of the extracted PS homopolymer grown from the Me3SiCH2 sites was low (homo-PS (g)/total PS (g), 15–22%). The gel permeation chromatography (GPC) curves shifted evidently after styrene polymerization, and change in the molecular weight (ΔMn, 39–56 kDa) was approximately twice the homo-PS Mn (20–23 kDa), in accordance with attachment of the PS chains at both ends of the PO chains. Transmission electron microscopy analysis of the thin films showed segregation of the PS domains in the PO matrix to form spherical or wormlike rippled structures depending on the PS content. The prepared triblock copolymers exhibited elastomeric properties in the cyclic tensile test, similar to the commercial PS-block-poly(ethylene-co-1-butene)-block-PS.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01365

DOI: 10.1021/acs.macromol.7b01365

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.