5 years ago

Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy
Hee-Sung Han, Peter Fischer, Seonghoon Woo, Jung-Il Hong, Mi-Young Im, Byoung-Chul Min, Joonyeon Chang, Kyung Mee Song, Ki-Suk Lee, Kun Soo Song, Jun Woo Choi, Min-Seung Jung, Hyun Cheol Koo
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin–orbit torques, can be reliably tuned by changing the magnitude of spin–orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin–orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.

Publisher URL: http://www.nature.com/articles/ncomms15573

DOI: 10.1038/ncomms15573

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.