3 years ago

A Scalable and Extensible Checkpointing Scheme for Massively Parallel Simulations.

Johannes Hötzer, Martin Bauer, Nils Kohl, Florian Schornbaum, Christian Godenschwager, Harald Köstler, Ulrich Rüde, Britta Nestler

Realistic simulations in engineering or in the materials sciences can consume enormous computing resources and thus require the use of massively parallel supercomputers. The probability of a failure increases both with the runtime and with the number of system components. For future exascale systems it is therefore considered critical that strategies are developed to make software resilient against failures. In this article, we present a scalable, distributed, diskless, and resilient checkpointing scheme that can create and recover snapshots of a partitioned simulation domain. We demonstrate the efficiency and scalability of the checkpoint strategy for simulations with up to $40$ billion computational cells executing on more than $400$ billion floating point values. A checkpoint creation is shown to require only a few seconds and the new checkpointing scheme scales almost perfectly up to more than $260\,000$ ($2^{18}$) processes. To recover from a diskless checkpoint during runtime, we realize the recovery algorithms using ULFM MPI. The checkpointing mechanism is fully integrated in a state-of-the-art high-performance multi-physics simulation framework. We demonstrate the efficiency and robustness of the method with a realistic phase-field simulation originating in the material sciences and with a lattice Boltzmann method implementation.

Publisher URL: http://arxiv.org/abs/1708.08286

DOI: arXiv:1708.08286v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.