3 years ago

Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.

Martin Wagner, Sebastian Bodenstedt, David Zimmerer, Klaus Maier-Hein, Lena Maier-Hein, Stefanie Speidel, Fabian Both, Beat Müller, Philip Kessler, Fabian Isensee, Anant Vemuri, Hannes Kenngott, Tobias Ross

Surgical data science is a new research field that aims to observe all aspects and factors of the patient treatment process in order to provide the right assistance to the right person at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Essentially, this method involves an auxiliary task that requires training with unlabeled endoscopic video data from the target domain to initialize a convolutional neural network (CNN) for the target task. In this paper, we propose to undertake a re-colorization of medical images with generative adversarial network (GAN)-based architecture as an auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We have validated both variants using medical instrument segmentation as the target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 60% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI endoscopic vision challenge 2017) using the target task (in this instance: segmentation).

Publisher URL: http://arxiv.org/abs/1711.09726

DOI: arXiv:1711.09726v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.