3 years ago

Primordial Black Holes from Inflation and non-Gaussianity.

A. Riotto, S. Matarrese, G. Franciolini, A. Kehagias

Primordial black holes may owe their origin to the small-scale enhancement of the comoving curvature perturbation generated during inflation. Their mass fraction at formation is markedly sensitive to possible non-Gaussianities in such large, but rare fluctuations. We discuss a path-integral formulation which provides the exact mass fraction of primordial black holes at formation in the presence of non-Gaussianity. Through a couple of classes of models, one based on single-field inflation and the other on spectator fields, we show that restricting to a Gaussian statistics may lead to severe inaccuracies in the estimate of the mass fraction as well as on the clustering properties of the primordial black holes.

Publisher URL: http://arxiv.org/abs/1801.09415

DOI: arXiv:1801.09415v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.