5 years ago

Redox properties of birnessite from a defect perspective [Applied Physical Sciences]

Redox properties of birnessite from a defect perspective [Applied Physical Sciences]
Michael J. Zdilla, Samantha L. Shumlas, John P. Perdew, Daniel R. Strongin, Akila C. Thenuwara, Ran Ding, Haowei Peng, Qing Kang, Ian G. McKendry

Birnessite, a layered-structure MnO2, is an earth-abundant functional material with potential for various energy and environmental applications, such as water oxidation. An important feature of birnessite is the existence of Mn(III) within the MnO2 layers, accompanied by interlayer charge-neutralizing cations. Using first-principles calculations, we reveal the nature of Mn(III) in birnessite with the concept of the small polaron, a special kind of point defect. Further taking into account the effect of the spatial distribution of Mn(III), we propose a theoretical model to explain the structure–performance dependence of birnessite as an oxygen evolution catalyst. We find an internal potential step which leads to the easy switching of the oxidation state between Mn(III) and Mn(IV) that is critical for enhancing the catalytic activity of birnessite. Finally, we conduct a series of comparative experiments which support our model.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.