3 years ago

Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection.

Mukremin Kilic, Fergal Mullally, Boris T. Gänsicke, Tsevi Mazeh, Eric Agol, Na'ama Hallakoun, Warren R. Brown, Patrick Dufour, Abraham Loeb, Alekzander Kosakowski, Jay Farihi, Dan Maoz

Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (~ 1e-4 - 1e-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H_2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.

Publisher URL: http://arxiv.org/abs/1711.10488

DOI: arXiv:1711.10488v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.