3 years ago

Band-pass Fabry-P\`erot magnetic tunnel junctions.

Ashwin. A. Tulapurkar, Bhaskaran Muralidharan, Abhishek Sharma

Significant scientific and technological progress in the field of spintronics is based on trilayer magnetic tunnel junction devices which principally rely on the physics of single barrier tunneling. While technologically relevant devices have been prototyped, the physics of single barrier tunneling poses ultimate limitations on the performance of magnetic tunnel junction devices. Here, we propose a fresh route toward high performance magnetic tunnel junctions by making electronic analogs of optical phenomena such as anti-reflections and Fabry-P\`erot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on the non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-P\`erot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (TMR$\approx5\times10^4\%$) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. We rationalize improvised spin transfer torque switching via analysis of the Slonczewski spin current transmission spectra. The proof of concepts presented here can lead to next-generation spintronics device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.

Publisher URL: http://arxiv.org/abs/1801.09409

DOI: arXiv:1801.09409v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.