5 years ago

How To Drive a Flashing Electron Ratchet To Maximize Current

How To Drive a Flashing Electron Ratchet To Maximize Current
Ofer Kedem, Bryan Lau, Emily A. Weiss
Biological systems utilize a combination of asymmetry, noise, and chemical energy to produce motion in the highly damped environment of the cell with molecular motors, many of which are “ratchets”, nonequilibrium devices for producing directed transport using nondirectional perturbations without a net bias. The underlying ratchet principle has been implemented in man-made micro- and nanodevices to transport charged particles by oscillating an electric potential with repeating asymmetric features. In this experimental study, the ratcheting of electrons in an organic semiconductor is optimized by tuning the temporal modulation of the oscillating potential, applied using nanostructured electrodes. An analytical model of steady-state carrier dynamics is used to determine that symmetry-breaking motion of carriers through the thickness of the polymer layer enables even temporally unbiased waveforms (e.g., sine) to produce current, an advance that could allow the future use of electromagnetic radiation to power ratchets. The analysis maps the optimal operating frequency of the ratchet to the mobility of the transport layer and the spatial periodicity of the potential, and relates the dependence on the temporal waveform to the dielectric characteristics and thickness of the layer.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03118

DOI: 10.1021/acs.nanolett.7b03118

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.