3 years ago

Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces

Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces
Christopher Eames, Jakub D. Baran, Stephen C. Parker, Marco Molinari, Keisuke Takahashi, M. Saiful Islam
Hybrid materials composed of different functional structural units offer the possibility of tuning both the thermal and electronic properties of a material independently. Using quantum mechanical calculations, we investigate the change in the electronic and thermoelectric transport properties of graphene and hydrogen-terminated carbon nanoribbons (CNRs) when these are placed on the SrTiO3 (001) surface (STO). We predict that both p-type and n-type composite materials can be achieved by coupling graphene/CNR to different surface terminations of STO. We show that the electronic properties of graphene and CNR are significantly altered on SrO-terminated STO but are preserved upon interaction with TiO2-terminated STO and that CNRs possess distinct electronic states around the Fermi level because of their quasi-one-dimensional nature, leading to a calculated Seebeck coefficient much higher than that of a pristine graphene sheet. Moreover, our calculations reveal that in the TiO2-SrTiO3/CNR system there is a favorable electronic level alignment between the CNR and STO, where the highest occupied molecular orbital of the CNR is positioned in the middle of the STO band gap, resembling n-type doping of the substrate. Our results offer design principles for guiding the engineering of future hybrid thermoelectric materials and, more generally, nanoelectronic materials comprising oxide and graphitic components.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02253

DOI: 10.1021/acs.chemmater.7b02253

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.