3 years ago

Non-Euclidean geometry, nontrivial topology and quantum vacuum effects.

Yurii A. Sitenko, Volodymyr M. Gorkavenko

Space out of a topological defect of the Abrikosov-Nielsen-Olesen vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects is induced in the vacuum. Basing on the continuum model for long-wavelength electronic excitations, originating in the tight-binding approximation for the nearest neighbor interaction of atoms in the crystal lattice, we consider quantum ground state effects in monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac-Weyl Hamiltonian operator. In the case of carbon nanocones, we find circumstances when the quantum ground state effects are independent of the boundary parameter and the disclination size.

Publisher URL: http://arxiv.org/abs/1711.00450

DOI: arXiv:1711.00450v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.