3 years ago

Modeling D-Region Ionospheric Response of the Great American TSE of August 21, 2017 from VLF signal perturbation.

Sandip K. Chakrabarti, Suman Chakraborty, Tamal Basak, Robert L. Tucker, Sudipta Sasmal

Solar eclipse is an unique opportunity to study the lower ionospheric variabilities under a controlled perturbation when the solar ultraviolet and X-ray are temporally occulted by the lunar disk. Sub-ionospheric Very Low Frequency (VLF) radio signal displays the ionospheric response of solar eclipse by modulating its amplitude and phase. During the Total Solar Eclipse (TSE) on August 21, 2017 in North America, data was recorded by a number of receivers as presented in public archive. Out of these, two receiving stations YADA in McBaine and K5TD in Tulsa could procure a reasonable quality of noise free data where the signal amplitude was clearly modulated due to the eclipse. During the lunar occultation, a C3.0 solar flare occurred and the signal received from Tulsa manifested the effect of sudden ionization due to the flare. The VLF amplitude in Tulsa shows the effect which is generally understood by superimposing effects of both the solar eclipse and flare. However, the signal by YADA did not perturb by the solar flare, as the flaring region was totally behind the lunar disk for the entire period. We numerically reproduced the observed signal amplitude variation at both the receiving locations by using Wait's two component D-region ionospheric model and the well-known Long Wavelength Propagation Capability (LWPC) code. The perturbed electron density for both the cases is computed which matches satisfactorily with the true ionospheric conditions.

Publisher URL: http://arxiv.org/abs/1801.09389

DOI: arXiv:1801.09389v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.