3 years ago

Orbital-enriched Flat-top Partition of Unity Method for the Schr\"odinger Eigenproblem.

Marc Alexander Schweitzer, Constanze Klaar, Albert Ziegenhagel, N. Sukumar, John E. Pask, Clelia Albrecht

Quantum mechanical calculations require the repeated solution of a Schr\"odinger equation for the wavefunctions of the system. Recent work has shown that enriched finite element methods significantly reduce the degrees of freedom required to obtain accurate solutions. However, time to solution has been adversely affected by the need to solve a generalized eigenvalue problem and the ill-conditioning of associated systems matrices. In this work, we address both issues by proposing a stable and efficient orbital-enriched partition-of-unity method to solve the Schr\"odinger boundary-value problem in a parallelepiped unit cell subject to Bloch-periodic boundary conditions. In our proposed PUM, the three-dimensional domain is covered by overlapping patches, with a compactly-supported, non-negative weight function, that is identically equal to unity over some finite subset of its support associated with each patch. This so-called flat-top property provides a pathway to devise a stable approximation over the whole domain. On each patch, we use $p$-th degree orthogonal polynomials that ensure $p$-th order completeness, and in addition include eigenfunctions of the radial solution of the Schr\"odinger equation. Furthermore, we adopt a variational lumping approach to construct a block-diagonal overlap matrix that yields a standard eigenvalue problem and demonstrate accuracy, stability and efficiency of the method.

Publisher URL: http://arxiv.org/abs/1801.09596

DOI: arXiv:1801.09596v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.