3 years ago

Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure.

Matthew P. DeCross, Evangelos I. Sfakianakis, Chanda Prescod-Weinstein, Anirudh Prabhu, David I. Kaiser

This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $\xi_I \gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k \rightarrow 0$. However, the large-$\xi_I$ regime is not reached until $\xi_I \geq {\cal O} (100)$. In the intermediate regime, with $\xi_I \sim {\cal O}(1 - 10)$, the resonance structure depends strongly on wavenumber and couplings. The resonance structure for isocurvature perturbations is distinct and more complicated than its adiabatic counterpart. An intermediate regime, for $\xi_I \sim {\cal O} (1 - 10)$, is again evident. For large values of $\xi_I$, the Floquet chart consists of densely spaced, nearly parallel instability bands, suggesting a very efficient preheating behavior. The increased efficiency arises from features of the nontrivial field-space manifold in the Einstein frame, which itself arises from the fields' nonminimal couplings in the Jordan frame, and has no analogue in models with minimal couplings. Quantitatively, the approach to the large-$\xi_I$ asymptotic solution for isocurvature modes is slower than in the case of the adiabatic modes.

Publisher URL: http://arxiv.org/abs/1610.08868

DOI: arXiv:1610.08868v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.