3 years ago

Structural insights into Resolvin D4 actions and further metabolites via a new total organic synthesis and validation.

Gregory S Keyes, David Fichtner, Matthew Spite, Brian E Sansbury, Jeremy W Winkler, Nan Chiang, Nicholas Wourms, Paul C Norris, Charles N Serhan, Xavier De La Rosa, Stephania Libreros
Local production and downstream metabolism of specialized proresolving lipid mediators (SPMs) are pivotal in regulating their biological actions during resolution of inflammation. Resolvin D4 (RvD4: 4S,5R,17S-trihydroxydocosa-6E,8E,10Z,13Z,15E,19Z hexaenoic acid) is one of the more recently elucidated SPMs with complete stereochemistry biosynthesized from docosahexaenoic acid . Here, we report a new multimilligram commercial synthesis that afforded enough material for matching, validation, and further evaluation of RvD4 functions. Using LC-MS-MS profiling, RvD4 was identified at bioactive amounts in human (1 pg/mL) and mouse bone marrow (12 pg/femur and tibia). In mouse bone marrow, ischemia increased the formation of RvD4 > 37-fold (455 pg/femur and tibia). Two separate mouse ischemic injury models were used, where RvD4 reduced second organ reperfusion lung injury > 50%, demonstrating organ protection. Structure-function relationships of RvD4 demonstrated > 40% increase in neutrophil and monocyte phagocytic function in human whole blood in comparison with 2 separate trans-containing double bond isomers that were inactive. These 2 isomers were prepared by organic synthesis: 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13Z,15E,19Z-hexaenoic acid (10-trans-RvD4), a natural isomer, and 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13E,15E,19Z-hexaenoic acid (10,13-trans-RvD4), a rogue isomer. Compared to leukotriene B4 , D-series resolvins (RvD1, RvD2, RvD3, RvD4, or RvD5) did not stimulate human neutrophil chemotaxis monitored via real-time microfluidics chambers. A novel 17-oxo-containing-RvD4 product of eicosanoid oxidoreductase was identified with human bone marrow cells. Comparison of 17-oxo-RvD4 to RvD4 demonstrated that with human leukocytes 17-oxo-RvD4 was inactive. Together, these provide commercial-scale synthesis that permitted a second independent validation of RvD4 complete stereochemical structure as well as evidence for RvD4 regulation in tissues and its stereoselective phagocyte responses.

Publisher URL: http://doi.org/10.1002/JLB.3MI0617-254R

DOI: 10.1002/JLB.3MI0617-254R

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.