3 years ago

Quantitative Proteomic Analysis of Four Developmental Stages of Saprolegnia parasitica.

Vincent Bulone, Svetlana Rezinciuc, Vaibhav Srivastava
Several water mold species from the Saprolegnia genus infect fish, amphibians, and crustaceans in natural ecosystems and aquaculture farms. Saprolegnia parasitica is one of the most severe fish pathogens. It is responsible for millions of dollars of losses to the aquaculture industry worldwide. Here, we have performed a proteomic analysis, using gel-based and solution (iTRAQ) approaches, of four defined developmental stages of S. parasitica grown in vitro, i.e., the mycelium, primary cysts, secondary cysts and germinated cysts, to gain greater insight into the types of proteins linked to the different stages. A relatively high number of kinases as well as virulence proteins, including the ricin B lectin, disintegrins, and proteases were identified in the S. parasitica proteome. Many proteins associated with various biological processes were significantly enriched in different life cycle stages of S. parasitica. Compared to the mycelium, most of the proteins in the different cyst stages showed similar enrichment patterns and were mainly related to energy metabolism, signal transduction, protein synthesis, and post-translational modifications. The proteins most enriched in the mycelium compared to the cyst stages were associated with amino acid metabolism, carbohydrate metabolism, and mitochondrial energy production. The data presented expand our knowledge of metabolic pathways specifically linked to each developmental stage of this pathogen.

Publisher URL: http://doi.org/10.3389/fmicb.2017.02658

DOI: 10.3389/fmicb.2017.02658

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.