3 years ago

Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers

Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers
Mukerrem Cakmak, Marcos Pantoja, Kevin A. Cavicchi, Zhiwei Lin
This article investigates shape memory polymers (SMPs) fabricated by swelling sulfur crosslinked natural rubber with four different molten fatty acids: lauric, myristic, palmitic, and stearic acid. As inexpensive additives, they allow commodity natural rubber to be directly converted to SMPs. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty acid, at which point the recovery starts to decline with increasing wt% acid due to network failure during shape programming. The shape fixity is found to depend on the yield stress and modulus of the fatty acid network, which both increase with increasing wt% acid. The choice of fatty acid also varies the trigger temperature for shape memory, which scales with the melting point of the fatty acid. Serendipitously, it is found that alignment of the fatty acid crystals during programming produces stiffer networks whose modulus increase with applied load, which counterbalances the higher elastic energy stored in the rubber network to produce lower sensitivity of the shape fixity to the applied load. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018. Shape memory polymers (SMPs) were fabricated by swelling natural rubber with molten fatty acids. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty. This effect depends on the strength of the fatty acid and its alignment during shape programming.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/polb.24578

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.