3 years ago

A Case Study of Low-Level Jets in Yerevan Simulated by the WRF Model

Artur Gevorgyan
Capabilities of high-resolution (3 km) Weather Research and Forecasting (WRF) simulations to reproduce topographically induced mountain-valley winds and low-level jets (LLJs) in Yerevan have been evaluated using high-frequency observational and modeled data. High sensitivities of simulations of near-surface winds and LLJ characteristics observed on 4 July 2015 to both boundary layer and initial and lateral boundary conditions setup have been demonstrated. Among the nine tested planetary boundary layer (PBL) parameterization schemes the MYJ, QNSE, and TEMF PBL schemes showed greater skill in simulation of near-surface valley winds over Yerevan, while the other PBL schemes tend to significantly underestimate the strength of valley winds, with the BouLac PBL scheme being the worst performer. Most of PBL schemes simulate well-defined LLJs in Yerevan associated with evening valley winds. The simulated jet cores are mostly located between 150 and 250 m above ground with magnitudes varying from 12 to 21 m s−1. However, the intensity of the observed nocturnal LLJ in Yerevan (located at 110 m above ground) is strongly underestimated by most of the WRF runs while the Shin and Hong and YSU PBL schemes simulate nocturnal LLJs higher than the observed LLJ. The WRF runs initiated with newly released European Centre for Medium-Range Weather Forecasts ERA-5 data set showed improved simulation of near-surface winds and nighttime potential temperatures in Yerevan relative to those forced by the Global Forecast System fields.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/2017JD027629

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.