3 years ago

Coding for locality in reconstructing permutations

Eitan Yaakobi, Muriel Médard, Netanel Raviv

Abstract

The problem of storing permutations in a distributed manner arises in several common scenarios, such as efficient updates of a large, encrypted, or compressed data set. This problem may be addressed in either a combinatorial or a coding approach. The former approach boils down to presenting large sets of permutations with locality, that is, any symbol of the permutation can be computed from a small set of other symbols. In the latter approach, a permutation may be coded in order to achieve locality. Both approaches must present low query complexity to allow the user to find an element efficiently. We discuss both approaches, and give a particular focus to the combinatorial one. In the combinatorial approach, we provide upper and lower bounds for the maximal size of a set of permutations with locality, and provide several simple constructions which attain the upper bound. In cases where the upper bound is not attained, we provide alternative constructions using a variety of tools, such as Reed-Solomon codes, permutation polynomials, and multi-permutations. In addition, several low-rate constructions of particular interest are discussed. In the coding approach we discuss an alternative representation of permutations, present a paradigm for supporting arbitrary powers of the stored permutation, and conclude with a proof of concept that permutations may be stored more efficiently than ordinary strings over the same alphabet.

Publisher URL: https://link.springer.com/article/10.1007/s10623-017-0378-9

DOI: 10.1007/s10623-017-0378-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.