5 years ago

Revealing the Local Proton Network through Three-Dimensional 13C/1H Double-Quantum/1H Single-Quantum and 1H Double-Quantum/13C/1H Single-Quantum Correlation Fast Magic-Angle Spinning Solid-State NMR Spectroscopy at Natural Abundance

Revealing the Local Proton Network through Three-Dimensional 13C/1H Double-Quantum/1H Single-Quantum and 1H Double-Quantum/13C/1H Single-Quantum Correlation Fast Magic-Angle Spinning Solid-State NMR Spectroscopy at Natural Abundance
Manoj Kumar Pandey, Yusuke Nishiyama, Michal Malon
1H double quantum (DQ)/1H single quantum (SQ) correlation solid-state NMR spectroscopy is widely used to obtain internuclear 1H–1H proximities, especially at fast magic-angle spinning (MAS) rate (>60 kHz). However, to date, 1H signals are not well-resolved because of intense 1H–1H homonuclear dipolar interactions even at the attainable maximum MAS frequencies of ∼100 kHz and/or under 1H–1H homonuclear dipolar decoupling irradiations. Here we introduce novel three-dimensional (3D) experiments to resolve the 1H DQ/1H SQ correlation peaks using the additional 13C dimension. Although the low natural abundance of 13C (1.1%) significantly reduces the sensitivities, the 1H indirect measurements alleviate this issue and make this experiment possible even in naturally abundant samples. The two different implementations of 13C/1H DQ/1H SQ correlations and 1H DQ/13C/1H SQ correlations are discussed and demonstrated using l-histidine·HCl·H2O at natural abundance to reveal the local 1H–1H networks near each 13C. In addition, the complete 1H resonance assignments are achieved from a single 3D 13C/1H DQ/1H SQ experiment. We have also demonstrated the applicability of our proposed method on a biologically relevant molecule, capsaicin.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06203

DOI: 10.1021/acs.jpcb.7b06203

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.