3 years ago

Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters

Luca Rivoira, Barbara Onida, Lia Vanzetti, Marta Appendini, Michele Castiglioni, Prasanta Jana, Gian Domenico Sorarù, Maria Concetta Bruzzoniti, Massimo Del Bubba


The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si–C–O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2–50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-1367-x

DOI: 10.1007/s11356-018-1367-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.