3 years ago

Dual Control of Molecular Conductance through pH and Potential in Single-Molecule Devices

Dual Control of Molecular Conductance through pH and Potential in Single-Molecule
Devices
Simon J. Higgins, Walther Schwarzacher, Richard J. Nichols, Doug S. Szumski, Richard J. Brooke, Andrea Vezzoli
One of the principal aims of single-molecule electronics is to create practical devices out of individual molecules. Such devices are expected to play a particularly important role as novel sensors thanks to their response to wide ranging external stimuli. Here we show that the conductance of a molecular junction can depend on two independent stimuli simultaneously. Using a scanning tunnelling microscope break-junction technique (STM-BJ), we found that the conductance of 4,4′-vinylenedipyridine (44VDP) molecular junctions with Ni contacts depends on both the electrochemically applied gate voltage and the pH of the environment. Hence, not only can the Ni|44VDP|Ni junction function as a pH-sensitive switch, but the value of the pH at which switching takes place can be tuned electrically. Furthermore, through the simultaneous control of pH and potential the STM-BJ technique delivers unique insight into the acid–base reaction, including the observation of discrete proton transfers to and from a single molecule.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b04995

DOI: 10.1021/acs.nanolett.7b04995

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.