3 years ago

Learning to Emulate an Expert Projective Cone Scheduler.

Neal Master

Projective cone scheduling defines a large class of rate-stabilizing policies for queueing models relevant to several applications. While there exists considerable theory on the properties of projective cone schedulers, there is little practical guidance on choosing the parameters that define them. In this paper, we propose an algorithm for designing an automated projective cone scheduling system based on observations of an expert projective cone scheduler. We show that the estimated scheduling policy is able to emulate the expert in the sense that the average loss realized by the learned policy will converge to zero. Specifically, for a system with $n$ queues observed over a time horizon $T$, the average loss for the algorithm is $O(\ln(T)\sqrt{\ln(n)/T})$. This upper bound holds regardless of the statistical characteristics of the system. The algorithm uses the multiplicative weights update method and can be applied online so that additional observations of the expert scheduler can be used to improve an existing estimate of the policy. This provides a data-driven method for designing a scheduling policy based on observations of a human expert. We demonstrate the efficacy of the algorithm with a simple numerical example and discuss several extensions.

Publisher URL: http://arxiv.org/abs/1801.09821

DOI: arXiv:1801.09821v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.