3 years ago

Structured Memory based Deep Model to Detect as well as Characterize Novel Inputs.

Dapeng Wu, Pratik Prabhanjan Brahma, Qiuyuan Huang

While deep learning has pushed the boundaries in various machine learning tasks, the current models are still far away from replicating many functions that a normal human brain can do. Explicit memorization based deep architecture have been recently proposed with the objective to understand and predict better. In this work, we design a system that involves a primary learner and an adjacent representational memory bank which is organized using a comparative learner. This spatially forked deep architecture with a structured memory can simultaneously predict and reason about the nature of an input, which may even belong to a category never seen in the training data, by relating it with the memorized past representations at the higher layers. Characterizing images of unseen object classes in both synthetic and real world datasets is used as an example to showcase the operational success of the proposed framework.

Publisher URL: http://arxiv.org/abs/1801.09859

DOI: arXiv:1801.09859v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.