3 years ago

A Linear Complementarity Theorem to solve any Satisfiability Problem in conjunctive normal form in polynomial time.

Giacomo Patrizi

Any satisfiability problem in conjunctive normal form can be solved in polynomial time by reducing it to a 3-sat formulation and transforming this to a Linear Complementarity problem (LCP) which is then solved as a linear program (LP). Any instance in this problem class, reduced to a LCP may be solved, provided certain necessary and sufficient conditions hold. The proof that these conditions will be satisfied for all problems in this class is the contribution of this paper and this derivation requires a nonlinear Instrumentalist methodology rather than a Realistic one and confirms the advantages of a Variational Inequalities implementation.

Publisher URL: http://arxiv.org/abs/1801.09987

DOI: arXiv:1801.09987v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.