3 years ago

Rigorous Restricted Isometry Property of Low-Dimensional Subspaces.

Gen Li, Qinghua Liu, Yuantao Gu

Dimensionality reduction is in demand to reduce the complexity of solving large-scale problems with data lying in latent low-dimensional structures in machine learning and computer version. Motivated by such need, in this work we study the Restricted Isometry Property (RIP) of Gaussian random projections for low-dimensional subspaces in $\mathbb{R}^N$, and rigorously prove that the projection Frobenius norm distance between any two subspaces spanned by the projected data in $\mathbb{R}^n$ ($n<N$) remain almost the same as the distance between the original subspaces with probability no less than $1 - {\rm e}^{-\mathcal{O}(n)}$. Previously the well-known Johnson-Lindenstrauss (JL) Lemma and RIP for sparse vectors have been the foundation of sparse signal processing including Compressed Sensing. As an analogy to JL Lemma and RIP for sparse vectors, this work allows the use of random projections to reduce the ambient dimension with the theoretical guarantee that the distance between subspaces after compression is well preserved.

Publisher URL: http://arxiv.org/abs/1801.10058

DOI: arXiv:1801.10058v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.