3 years ago

SegDenseNet: Iris Segmentation for Pre and Post Cataract Surgery.

Richa Singh, Mayank Vatsa, Rohit Keshari, Aditya Lakra, Pavani Tripathi

Cataract is caused due to various factors such as age, trauma, genetics, smoking and substance consumption, and radiation. It is one of the major common ophthalmic diseases worldwide which can potentially affect iris-based biometric systems. India, which hosts the largest biometrics project in the world, has about 8 million people undergoing cataract surgery annually. While existing research shows that cataract does not have a major impact on iris recognition, our observations suggest that the iris segmentation approaches are not well equipped to handle cataract or post cataract surgery cases. Therefore, failure in iris segmentation affects the overall recognition performance. This paper presents an efficient iris segmentation algorithm with variations due to cataract and post cataract surgery. The proposed algorithm, termed as SegDenseNet, is a deep learning algorithm based on DenseNets. The experiments on the IIITD Cataract database show that improving the segmentation enhances the identification by up to 25% across different sensors and matchers.

Publisher URL: http://arxiv.org/abs/1801.10100

DOI: arXiv:1801.10100v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.