3 years ago

Identification of Iridoid Synthases from Nepeta species: Iridoid cyclization does not determine nepetalactone stereochemistry

M. O., B., N. H., C. R., Kamileen, Zhao, Lichman, S., D., L., Sherden, Buell, O'Connor, Caputi
Nepetalactones are iridoid monoterpenes with a broad range of biological activities produced by plants in the Nepeta genus. However, none of the genes for nepetalactone biosynthesis have been discovered. Here we report the transcriptomes of two Nepeta species, each with distinctive profiles of nepetalactone stereoisomers. As a starting point for investigation of nepetalactone biosynthesis in Nepeta, these transcriptomes were used to identify candidate genes for iridoid synthase homologs, an enzyme that has been shown to form the core iridoid skeleton in several iridoid producing plant species. Iridoid synthase homologs identified from the transcriptomes were cloned, heterologously expressed, and then assayed with the 8-oxogeranial substrate. These experiments revealed that catalytically active iridoid synthase enzymes are present in Nepeta, though there are unusual mutations in key active site residues. Nevertheless, these enzymes exhibit similar catalytic activity and product profile compared to previously reported iridoid synthases from other plants. Notably, four nepetalactone stereoisomers with differing stereochemistry at the 4alpha and 7alpha positions, which are generated during the iridoid synthase reaction, are observed at different ratios in various Nepeta species. This work strongly suggests that the variable stereochemistry at these 4alpha and 7alpha; positions of nepetalactone diastereomers is established further downstream in the iridoid pathway in Nepeta. Overall, this work provides a gateway into the biosynthesis of nepetalactones in Nepeta.

Publisher URL: http://biorxiv.org/cgi/content/short/179572v1

DOI: 10.1101/179572

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.