3 years ago

Bayesian Neural Networks.

Amir Husain, Aniruddh Khera, Vikram Mullachery

This paper describes and discusses Bayesian Neural Network (BNN). The paper showcases a few different applications of them for classification and regression problems. BNNs are comprised of a Probabilistic Model and a Neural Network. The intent of such a design is to combine the strengths of Neural Networks and Stochastic modeling. Neural Networks exhibit continuous function approximator capabilities. Stochastic models allow direct specification of a model with known interaction between parameters to generate data. During the prediction phase, stochastic models generate a complete posterior distribution and produce probabilistic guarantees on the predictions. Thus BNNs are a unique combination of neural network and stochastic models with the stochastic model forming the core of this integration. BNNs can then produce probabilistic guarantees on it's predictions and also generate the distribution of parameters that it has learnt from the observations. That means, in the parameter space, one can deduce the nature and shape of the neural network's learnt parameters. These two characteristics makes them highly attractive to theoreticians as well as practitioners. Recently there has been a lot of activity in this area, with the advent of numerous probabilistic programming libraries such as: PyMC3, Edward, Stan etc. Further this area is rapidly gaining ground as a standard machine learning approach for numerous problems

Publisher URL: http://arxiv.org/abs/1801.07710

DOI: arXiv:1801.07710v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.