3 years ago

Reaction Coordinate for Ice Crystallization on a Soft Surface

Reaction Coordinate for Ice Crystallization on a Soft Surface
Yuqing Qiu, Valeria Molinero, Rebecca Hanscam, Laura Lupi
The control of assembly and crystallization of molecules is becoming increasingly important in chemistry, engineering, and materials sciences. Crystallization is also central to understand natural processes that include the formation of atmospheric ice and biomineralization. Organic surfaces, biomolecules, and even liquid/vapor interfaces can promote the nucleation of crystals. These soft surfaces present significant structural fluctuations, which have been shown to strongly impact the rate of crystallization. This raises the question of whether degrees of freedom of soft surfaces play a role in the reaction coordinate for crystal nucleation. Here we use molecular simulations to investigate the mechanism of ice nucleation promoted by an alcohol monolayer. Our analysis indicates that while the flexibility of the surface strongly depresses its ice nucleation ability, it does not play a role in the coordinate that controls the transformation from liquid to ice. We find that the variable that drives the transformation is the size of the crystalline cluster, the same as that for the homogeneous crystallization. We argue that this is a general result that arises from the separation of time scales between surface fluctuations and the crossing of the transition state barrier for crystallization.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01855

DOI: 10.1021/acs.jpclett.7b01855

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.