3 years ago

Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808.

Angela Bragaglia, Eugenio Carretta, Sara Lucatello, Valentina D'Orazi, Raffaele G. Gratton, Antonio Sollima

We observed a sample of 90 red giant branch (RGB) stars in NGC 2808 using FLAMES/GIRAFFE and the high resolution grating with the set up HR21. These stars have previous accurate atmospheric parameters and abundances of light elements. We derived aluminium abundances for them from the strong doublet Al I 8772-8773 Angstrom as in previous works of our group. In addition, we were able to estimate the relative CN abundances for 89 of the stars from the strength of a large number of CN features. When adding self consistent abundances from previous UVES spectra analysed by our team, we gathered [Al/Fe] ratios for a total of 108 RGB stars in NGC 2808. The full dataset of proton-capture elements is used to explore in details the five spectroscopically detected discrete components in this globular cluster. We found that different classes of polluters are required to reproduce the (anti)-correlations among all proton-capture elements in the populations P2, I1, and I2 with intermediate composition. This is in agreement with the detection of lithium in lower RGB second generation stars, requiring at least two kind of polluters. To have chemically homogeneous populations the best subdivision of our sample is into six components, as derived from statistical cluster analysis. By comparing different diagrams [element/Fe] vs [element/Fe] we show for the first time that a simple dilution model is not able to reproduce all the sub-populations in this cluster. Polluters of different masses are required. NGC 2808 is confirmed to be a tough challenge to any scenario for globular cluster formation.

Publisher URL: http://arxiv.org/abs/1801.09689

DOI: arXiv:1801.09689v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.