3 years ago

Large-N CP(N-1) sigma model on a finite interval and the renormalized string energy.

Alessandro Betti, Keisuke Ohashi, Sven Bjarke Gudnason, Stefano Bolognesi, Kenichi Konishi

We continue the analysis started in a recent paper of the large-N two-dimensional CP(N-1) sigma model, defined on a finite space interval L with Dirichlet (or Neumann) boundary conditions. Here we focus our attention on the problem of the renormalized energy density $\mathcal{E}(x,\Lambda,L)$ which is found to be a sum of two terms, a constant term coming from the sum over modes, and a term proportional to the mass gap. The approach to $\mathcal{E}(x,\Lambda,L)\to\tfrac{N}{4\pi}\Lambda^2$ at large $L\Lambda$ is shown, both analytically and numerically, to be exponential: no power corrections are present and in particular no L\"uscher term appears. This is consistent with the earlier result which states that the system has a unique massive phase, which interpolates smoothly between the classical weakly-coupled limit for $L\Lambda\to 0$ and the "confined" phase of the standard CP(N-1) model in two dimensions for $L\Lambda\to\infty$.

Publisher URL: http://arxiv.org/abs/1708.08805

DOI: arXiv:1708.08805v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.