3 years ago

The quantum fate of black hole horizons.

Sergey N. Solodukhin, Debajyoti Sarkar, Clement Berthiere

The presence of a horizon is the principal marker for black holes as they appear in the classical theory of gravity. In General Relativity (GR), horizons have several defining properties. First, there exists a static spherically symmetric solution to vacuum Einstein equations which possesses a horizon defined as a null-surface on which the time-like Killing vector becomes null. Second, in GR, a co-dimension two sphere of minimal area is necessarily a horizon. On a quantum level, the classical gravitational action is supplemented by the quantum effective action obtained by integrating out the quantum fields propagating on a classical background. In this note we consider the case when the quantum fields are conformal and perform a certain non-perturbative analysis of the semiclassical equations obtained by varying the complete gravitational action. We show that, for these equations, both of the above aspects do not hold. More precisely, we prove that i) a static spherically symmetric metric that would describe a horizon with a finite Hawking temperature is, generically, {\it not} a solution; ii) a minimal $2$-sphere is {\it not} a horizon but a tiny throat of a wormhole. We find certain bounds on the norm of the Killing vector at the throat and show that it is, while non-zero, an exponentially small function of the Bekenstein-Hawking (BH) entropy of the classical black hole. We also find that the possible temperature of the semiclassical geometry is exponentially small for large black holes. These findings suggest that a black hole in the classical theory can be viewed as a certain (singular) limit of the semiclassical wormhole geometry. We discuss the possible implications of our results.

Publisher URL: http://arxiv.org/abs/1712.09914

DOI: arXiv:1712.09914v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.